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Abstract. Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fos-

sil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in

urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as

fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical

need as their contribution to the global carbon budget increases rapidly. In this study, we developed5

the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense net-

work of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was

evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission es-

timate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions

over the area (from 4.5 to 5.7 MtC±0.23 MtC). However, several key parameters of the inverse sys-10

tem need to be addressed to carefully characterize the spatial distribution of the emissions and the

aggregated total emissions. We found that spatial structures in prior emission errors, mostly undeter-

mined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over

the urban area. Several other parameters of the inversion were sufficiently constrained by additional

observations such as the characterization of the GHG boundary inflow and the introduction of hourly15

transport model errors estimated from the meteorological assimilation system. Finally, we estimated

the uncertainties associated with remaining systematic errors and undetermined parameters using
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an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the

ensemble mean and quartiles are 5.26 - 5.91 MtC,i.e. a statistically significant difference compared

to the prior total emissions of 4.1 to 4.5 MtC. We therefore conclude that atmospheric inversions20

are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure

the inflow of GHG over the city, but additional information onprior emissions and their associated

error structures are required if we are to determine the spatial structures of urban emissions at high

resolution.

1 Introduction25

The increase in the atmospheric concentration of carbon dioxide (CO2) reached the fastest decadal

rate over the period 2002-2011 with 2±0.1 ppm/yr. Consequently, CO2 remains the largest single

contributor to the increase in the anthropogenic radiativeforcing (IPCC, 2014), with 80% of the

emissions originating from fossil fuel combustion and industrial processes. Quantification of anthro-

pogenic CO2 emissions is typically accomplished via bottom-up accounting or inventory methods30

at global (e.g. Marland et al. (1985); Andres et al. (1996, 2012); Asefi-Najafabady et al. (2014)) and

regional scales (Gurney et al., 2009, 2012). These inventories remain affected by large uncertainties

(Andres et al., 2014) which increases at higher spatial and temporal resolutions (e.g. Turnbull et al.

(2011)). As legislation to regulate GHG emissions becomes increasingly likely, independent verifi-

cation of inventory-based anthropogenic emissions becomes an emerging need (NRC, 2010).35

Urban CO2 emissions represent about 70% of the global emissions and will likely increase as

large metropolitan areas are projected to grow twice as fastas the world population in the coming

15 years (United Nations and Social Affairs, 2014). Monitoring urban emissions using independent

approaches is therefore a critical need for current and future regulation policies with atmospheric

inversion techniques being a potential candidate to provide a robust and complementary approach to40

current reporting activities (Nisbet and Weiss, 2010). However, a better understanding of the under-

lying human activities remains critical for policy decisions and mitigation strategies (Hutyra et al.,

2014), which implies the use of process-oriented systems, highly resolved in both space and time

(Gurney et al., 2012). Current atmospheric inversion systems remain too coarse spatially and are

limited to constraining the emissions rather than the underlying processes (). Therefore, higher res-45

olution inverse systems are needed to better understand andquantify the emissions by sector (e.g.

manufacturing sources, power generation sources, mobile sources) in support of future policies.

This lack of well-established methods for quantifying spatially and temporally resolved GHG

emissions applies to urban areas. Recent studies have provided high-resolution emission products

separated by sector (Gurney et al., 2012), but are difficult to assemble and very likely prone to sys-50

tematic errors (Gurney, 2014). Atmospheric methods offer aunique angle on urban emissions by

capturing the accumulated atmospheric signals emitted from all sectors of activity (Turnbull et al.,
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2011). But these methods are also limited by various sourcesof errors, mostly due to the atmospheric

transport models (Gerbig et al., 2003; Diaz-Isaac et al., 2014) and the incorrect characterization of

prior flux errors (Koohkan and Bocquet, 2012), as well as by the amount of atmospheric measure-55

ments available over the region of interests. At moderate resolutions (10-40km), atmospheric inver-

sions using regional atmospheric transport models (Lauvaux et al., 2012; Schuh et al., 2013) have

the potential to provide spatially and temporally resolvedGHG surface fluxes (Ogle et al., 2015). At

higher resolutions, several studies have shown the potential of atmospheric systems to detect emis-

sions (McKain et al., 2012; Kort et al., 2012; Bréon et al., 2015) but this approach has not yet been60

fully implemented over small domains with the high resolution required for urban areas.

The inversion of large point sources and well-defined emitting areas are particularly sensitive

to the transport model and the representation of plume structures over flat or complex terrain, es-

pecially for observations within the urban domain (Bréon etal., 2015). Large spatial and temporal

gradients in urban emissions generate large gradients in atmospheric mixing ratios. Therefore, the65

development of accurate atmospheric modeling systems ableto simulate these gradients is a pre-

requisite to the detection and quantification of emissions over highly contrasted urban environment.

High-density observations combined with high-resolutionatmospheric modeling has the potential to

yield such resolution over small domains. At the mechanistic level, processes from specific sectors

of the economy shape the spatial pattern of GHG emissions across urban centers. But atmospheric70

inversions have not yet been used to separate the contributions from individual sectors of the econ-

omy (Djuricin et al., 2012) or to separate biogenic and anthropogenic sources (Djuricin et al., 2010).

Expanding the atmospheric inversion systems to include trace gas measurements, including isotopic

tracers, offers the capability to measure the fraction of the signals related to fossil fuel consump-

tion (Turnbull et al., 2015) and perhaps sectoral emissions. In this context, the Indianapolis Flux75

Experiment (INFLUX) is exploring the technical limits of this method for inferring highly resolved

anthropogenic GHG emissions estimates.

Here, we present the first atmospheric inversion system producing high-resolution GHG emissions

of CO2 at the urban scale, assimilating both atmospheric mixing ratios of greenhouse gases and me-

teorological measurements. The inverse modeling system isable to derive spatially and temporally80

resolved urban CO2 emissions within a large urban area, starting with a high resolution emission

product, Hestia (Gurney et al., 2012). First, we developed an atmospheric Four-Dimensional Data

Assimilation (FDDA) modeling system at 1km spatial resolution assimilating continuously meteo-

rological measurements to improve the representation of the local atmospheric dynamics. Transport

errors associated with the atmospheric modeling system arethen quantified as a function of the ac-85

curacy of different meteorological variables. Second, we demonstrate the current inversion system

ability to monitor GHG emissions using a high-density spatially-distributed atmospheric observing

network of instrumented towers, using two existing high-resolution CO2 emissions products. Finally,
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we construct an ensemble of inverse solutions to represent additional sources of errors in the current

inversion system and quantify the uncertainties associated with parameters in the system.90

2 Methods

2.1 Atmospheric modeling system

2.1.1 Atmospheric Four Dimensional Data Assimilation (FDDA) modeling system

The core of our realtime modeling system Deng et al. (2012a) used in this research is the Weather

Research and Forecasting model coupled with Chemistry (WRF-Chem, Grell et al. (2005)) modified95

for passive tracers as in Lauvaux et al. (2012). The WRF configuration for the model physics used

here was based on previous numerical modeling studies (e.g., Gaudet et al. (2009); Rogers et al.

(2013); Deng et al. (2012b)) using: 1) the single-Moment 3-class simple ice scheme for microphys-

ical processes, 2) the Kain-Fritsch scheme for cumulus parameterization on the 9-km grid, 3) the

Rapid Radiative Transfer Model for longwave atmospheric radiation, and the Dudhia scheme for100

shortwave atmospheric radiation, 4) the Turbulent KineticEnergy (TKE)-predicting Mellor-Yamada-

Jancic (MYJ) Level 2.5 turbulent closure scheme for the turbulence parameterization in the Planetary

Boundary Layer (PBL), and 5) the 5-layer thermal diffusion scheme for representation of the inter-

action between the land surface and the atmospheric surfacelayer (Skamarock et al., 2008).

The WRF modeling system used in this study has FDDA capabilities to allow the meteoro-105

logical observations to be continuously assimilated into the model. The FDDA technique used

in this study was originally developed for MM5 (Stauffer andSeaman, 1994) and recently imple-

mented into WRF (Deng et al., 2009) and has been used in severalstudies (e.g., Rogers et al. (2013);

Lauvaux et al. (2013)). Nudging of the wind field is applied through all model layers, but nudging

of the mass fields (temperature and moisture) is only allowedabove the model-simulated PBL so110

that the PBL structure produced by the model is dominated by the model physics. In this specific

application, the World Meteorological Organization (WMO) observations were assimilated into the

WRF-Chem system to produce a dynamic analysis, blending the model simulations and the obser-

vations to produce the most accurate meteorological conditions possible to simulate the atmospheric

CO2 concentrations in space and time throughout the Indianapolis region.115

The WRF model grid configuration used for this demonstration is comprised of three grids: 9-km,

3-km and 1-km (cf. Fig. 1 for the 3-km and 1-km grids), all of which are co-centered at Indianapolis,

Indiana. The 9-km grid, with a mesh of 100x100 grid points, contains the eastern part of the US

Midwest. The 3-km grid, with a mesh of 99x99 grid points, contains the southern part of the state of

Indiana. The 1-km grid, with a mesh of 87x87, covers the metropolitan area of Indianapolis and the120

8 eight counties surrounding Marion county. 59 vertical terrain-following layers are used, with the
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Figure 1.Surface meteorological observation distribution including surface meteorological stations (red circles)

and rawindsondes (red diamonds) from the WMO database used in the WRF-FDDA modeling system, and CO2

tower locations (gold star) in the 1km simulation domain (blue square). Indianapolis is located at the center of

the domains.

center point of the lowest model layer located∼6 m above ground level (AGL). The thickness of the

layers increases gradually with height, with 25 layers below 850 hPa (∼1550 m AGL).

The FDDA parameters used in this application can be found in Deng et al. (2012a). For this ap-

plication, 3D analysis nudging and surface analysis nudging were applied on the 9-km grid with125

reduced nudging strength compared to observation nudging,and observation nudging was applied

on all grids with the same nudging strength. No mass fields (temperature and moisture) observations

are assimilated within the WRF-predicted PBL. The meteorological observations assimilated into

the WRF system are based on the WMO observations distributed bythe National Weather Service

(NWS), and include both 12-hourly upper-air rawinsondes andhourly surface observations. Figure130

1 shows the WMO surface observation distributions, indicating a significant amount of observa-

tions over the region. The gridded meteorological data usedto initialize the WRF-Chem realtime

system was the National Centers for Environmental Prediction (NCEP) North American Regional

Reanalysis (NARR) available every 3 hours.

2.2 Lagrangian Particle Dispersion Modeling135

The Lagrangian Particle Dispersion Model (LPDM) describedby Uliasz (1994) is used as the adjoint

model of the WRF-FDDA modeling system. Particles are released from the receptors in abackward

in time mode with the wind fields and the turbulence generated by the Eulerian model WRF-FDDA.

In a backward in time mode, particles are released from the measurement locations and travel to the
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surface and the boundaries. Compared to a forward mode, all the particles here are used to estimate140

fluxes, which reduces the computational cost of the simulation. Every 20 seconds, 35 particles are

released at the position of the towers, which corresponds to6,300 particles per hour per measurement

site (or receptor). At high spatial resolutions, the particle locations have to be stored at a much higher

frequency compared to regional applications. As a first estimation, a particle would fly over a 1km

pixel in about 3 minutes (assuming a horizontal mean wind speed of 5 m/s). To avoid any gaps in145

the particle trajectories, particle positions were recorded every minute. At the opposite, because the

domain is small (87km wide), the integration time,i.e. the time window during which the air masses

are influenced by the local surface emissions, is limited to few hours. Here, particles were integrated

over 12 hours to ensure that particles traverse the entire domain in any meteorological situations.

The dynamical fields in LPDM are forced by mean horizontal winds (u, v, w), potential temper-150

ature, and turbulent kinetic energy (TKE) from WRF-FDDA. At this resolution (1 km), turbulent

motion corresponds to the closure of the energy budget at each time step. This scalar is used to

quantify turbulent motion of particles as a pseudo random velocity. Based on the TKE, wind, and

potential temperature, the Lagrangian model diagnoses turbulent vertical velocity and dissipation of

turbulent energy. The off-line coupling between an Eulerian and a Lagrangian model solves most155

of the problems of non-linearity in the advection term at themesoscale. Most of the non-linear pro-

cesses resolved by the atmospheric model are attributed to ascalar representing the velocity of the

particles. At each time step (here 20 seconds), particles move with a velocity interpolated from the

dynamical fields of the WRF-FDDA simulation stored every 20 minutes. The time step depends on

the TKE, following the discretization scheme described in (Thomson, 1987).160

The formalism for inferring source-receptor relationships from particle distributions is described

by Seibert and Frank (2004). At each time step, the fraction of particles (released from one receptor

at one time) within some volume, gives the influence of that volume on the receptor. If the vol-

ume includes the surface this will yield the influence of surface sources. If the volume includes the

boundary (sides or top) it yields the influence of that part ofthe boundary.165

2.3 The INFLUX CO2 observation tower network

The measurement network was described in (Miles et al., 2015) for CO2, CH4, and CO. Here, we

used the daytime CO2 mixing ratios (17-22 UTC) from nine of the twelve instrumented towers,

corresponding to the sites operational between September 2012 and April 2013. The sites (1, 2, 3,

4, 5, 7, 9, 10, and 12) are presented in Figure 2. The Cavity Ring Down Spectrometer instruments170

(Crosson, 2008) measured the atmospheric CO2 mixing ratios continuously over the period, at differ-

ent sampling heights depending on the existing tower infrastructure. The minimum sampling height

is 40m high at Site 10 and the maximum is 136m high at Site 2. Theinstruments were calibrated

using the protocol described in Richardson et al. (2011), with a drift of less than 0.2 ppm per year

across the sites, and a noise of 0.1 ppm on daily daytime averages (Miles et al., 2015).175
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Figure 2. CO2 tower locations (gold star) in the 1km simulation domain (blue square), with additional towers

not available for the study period (white star), and surface meteorological stations (red circles) from the WMO

database used in the WRF-FDDA modeling system. Indianapolis is located atthe center of the domains.

2.4 Prior fluxes for CO2

2.4.1 High resolution emissions: The Hestia product

The Hestia CO2 emission product (Gurney et al., 2012) was coupled to the WRF-FDDA model

to simulate the CO2 atmospheric mixing ratios over and around Indianapolis. The Hestia product

combines observations and modeling to produce CO2 emissions from the combustion of fossil fuels,180

and is considered here as a ”bottom-up” approach. A wide range of data sources are used to quantify

emissions at the scale of individual buildings and road segments, including local traffic monitoring,

property tax assessor data, power plant emissions monitoring, air quality pollution reporting. The

data product includes some spatial and temporal proxies to attain hourly emissions at fine spatial

scales for Marion county and the eight counties that surround Marion County. The space and time185

patterns are generated for the year 2011. Emissions for 2012and 2013 reflect the application of

scale factors derived from the DOE Energy Information Administration fuel statistics specific to

sector and fuel type. Hence, the magnitude of emissions change over the 2011-2013 time period

but the sub-county spatial structure remains fixed. Furthermore, the sub-monthly time structure in

all sectors other than power production are represented by fixed time cycles derived from multiple190

years of monitoring data. For example, the onroad CO2 emissions reflect a spatially-explicit use

of a mean weekly cycle (7-day cycle within a given month) and mean diurnal cycle (24-hour cycle

within a given week). The emissions available for each of the8 economic sectors (cf. Table 1) for the
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years 2012 and 2013 were aggregated from the initial building-level product down to 0.002 degree

resolution. The 0.002 gridded product was then aggregated further at 1km resolution over the WRF195

grid, covering Marion county and the eight surrounding counties. Figure 2.4.2 (left panel) shows the

CO2 emissions in ktC.km−2 from Hestia with the nine instrumented towers that were operational

during the inversion period. The 1-km WRF grid was designed tocover the area corresponding to

the 9 counties, except for a minor fraction extending beyondthe rectangular domain. The total CO2

emissions for the 9 counties around Indianapolis are 6.84 MtC for the year 2012 and 7.17 MtC for200

2013. The 8-month total emissions over the inversion domain, representing most of the 9 counties

slightly cropped following the WRF simulation domain, are 4.56 MtC for September 2012 to April

2013.

2.4.2 The Open-source Data Inventory for Anthropogenic CO2(ODIAC) emission data

We used the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission data (Oda and Maksyutov,205

2011) as an alternative prior for inversion. The version of the ODIAC emission data used in this study

is based on emission estimates updated using the CDIAC global and national fossil fuel emission

estimates (http://cdiac.ornl.gov/trends/emis/meth_reg.html; last access 27 March, 2015) and the year

2013 edition of BP statistical review of world energy1. The emission spatial distributions were es-

timated at 1x1km resolution using the same method presentedin Oda and Maksyutov (2011). The210

emissions from power plants are mapped using the geolocation reported in the CARbon Monitoring

and Action (CARMA) global power plant database (www.carma.org; last access 27 March, 2015)

and the rest of the emissions (non point source emissions) are distributed using the satellite observed

nightlight data. The nightlight data used in the version of ODIAC emission data were developed

using a new algorithm, improving the representation of suburban areas compared to the original ver-215

sion Oda et al. (2010). ODIAC emission data only indicates monthly emissions (based on CDIAC

monthly emission data) and do not have diurnal and weekly cycles. Further details of the ODIAC

are described in Oda (2015).

2.5 Prior emission errors

The complexity of the underlying model used to generate the Hestia emission product at very high220

resolution (i.e. building-scale) limits our ability to rigorously quantifythe associated errors, includ-

ing their spatial and temporal structures. As a simplified approach, we defined the error variances as

a percentage of the net emissions for all the economical sectors, except for the utility sector for which

the emissions are better constrained. Hourly energy production statistics and direct measurements

provide more accurate hourly emissions for energy production (i.e. utility sector). Therefore, we de-225

fined the error variances as 60% of the net emissions at 1km resolution in the initial case for all the
1http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/statistical-

review-downloads.html; last access 27 March, 2015
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Figure 3. CO2 a priori emissions using the Hestia product aggregated at 1km resolution(left) and the space-

based emissions from ODIAC downscaled at 1km resolution (right)

sectors except the utility sector. Overall, the aggregatederror variance is about 25% of the total emis-

sions over the entire domain for each 5-day periods. We performed a second test with much larger

prior errors (i.e. 100% of the net emissions) to evaluate the convergence of theinverse emissions in

a very under-constrained system (cf. Section 4.4). For the spatial error structures, we used a similar230

approach to Lauvaux et al. (2012),i.e. a correlation length exponentially decaying with the distance,

applied among urban pixels only (based on the National Land Cover Database 2010). The distance-

based correlation matrix (CL) is created first and then combined with land cover types for each

land cover type assuming no correlation between urban and non-urban pixels (Curb). The combined

matrix is created assuming equal weights from both correlation matrices, usingCf =
√

CL.
√

Curb.235

For the definition of the correlation lengthL, we tested the impact on the posterior emissions using

varying distances,i.e. no correlation,L=4km andL=12km. The use and the definition of correlation

length in prior emission errors is discussed in section 4.4,and considered as an additional contribu-

tion to the overall uncertainties, mainly associated with the definition of the correlation length, in

section 4.4.240

The length of the inversion window was defined by the averagedlength of synoptic and mesoscale

events over the area. Typically, wind directions change with the passage of weather systems, which

results in incomplete surface coverage in terms of tower footprints if the inversion time window is

too short. The minimum of 5 days correspond to 2 to 3 synoptic conditions on average, and repre-

sent the minimum length to constrain the whole area. As we invert for 5-day emissions, temporal245

correlations are considered negligible between two inversion windows. To evaluate this assumption,

we performed a similar inversion using 10-day periods and compare the results in section 3.6.
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2.6 Observation errors

2.6.1 Observation error variances

For the transport model errors, we propagated the errors of the WRF-FDDA system into the inver-250

sion system through the error variances. The propagation oferrors was performed in two steps: 1. we

quantified the Mean Absolute Errors (MAE) at hourly time scales in WRF-FDDA using the avail-

able surface WMO stations to define the hourly performance of the model, and 2. we scaled the error

variances using the normalized distance of aχ2 distribution over each 5-day periods. This technique

removes singular time steps during which the transport model performed poorly. The balance be-255

tween prior error statistics and observation errors was evaluated using theχ2 normalized distanceλ,

defined byλ = 1

n
[(y−Hx0)T (HBHT +R)−1(y−Hx0)], similarly to Kaminski et al. (2001).

For the first step, the hourly MAE averaged over the domain,ε, for the wind speed and direction

were used to define the hourly transport errors. Because these measurements were assimilated in

the WRF-FDDA simulation, the true MAE is most likely under-estimated. However, we use these260

model-data residuals as a representation of the relative performances of the WRF-FDDA model at

the hourly time scale. In principle, meteorological errorscannot directly be diagnosed from modeled

CO2 mixing ratios to describe the CO2 variances in the inversion. Indeed, both flux and transport

errors affect the simulated CO2 mixing ratios. Instead, we only diagnosed transport errorsfrom

meteorological errors, which were then transformed into hourly scaling factors applied to hourly265

CO2 variances. To quantify these scaling factors, an error model was created to generate transport

errors for the CO2 mixing ratios depending on both errors,i.e. in wind speed and direction. An

adjustment coefficient defined as the ratio between the hourly MAE and the median of the MAE

over the 5-day period was computed for both variables. The maximum of the two ratios define the

hourly adjustment coefficient. To avoid using the time stepsduring which the model is inaccurate,270

the hourly errors were used to scale the variancesε2

i,j for a grid point(i, j) (i.e. the diagonal terms

in R) using the following relationship:

ε2

i,j = max(
εspd

µspd

,
εdir

µdir

).ε2

init (1)

with εspd and εdir the hourly mean errors,µ the median of the 5-day errors, andε2

init the first-

guess variance. The first-guess variance is our best-estimate computed from a chi2 test (cf. 2.8)275

using the normalized distanceλ over each 5-day periods (Tarantola, 2004).λ is constant for each

5-day windows, and is applied to correct for unbalanced error terms (ratio of prior emission errors to

number of unknowns). The hourly scaling factors are appliedto the first-guess variance corrected by

λ. For non-diagonal matrices, as described in the next section, the normalized distanceλ correction

cannot be applied directly to the variances. Otherwise, thecorrection would be applied multiple times280

through the covariances and therefore over-estimate the total errors by several factors. In other terms,

applying a multiplicative factor to the variances would amplify the scaling through the covariances.

10



To compensate for the over-estimation by the error covariances, we applied the square root of the

scaling factor (
√

λ.ε2

i,j) which is assuming a linear relationship between variancesand covariances

(covx,y = corrx,y.σx.σy). This technique was tested over multiple 5-day segments and produced a285

systematically better normalized distanceλ (i.e. closer to one).

Over the inversion period (September 2012 to April 2013), the median of the wind speed MAE

is about 0.8m.s−1 and 12◦. These two termsµdir andµspd were used for the inOn an hourly basis,

the ratio between the median and the hourly MAE would define the adjustment of the initial error,

e.g. multiplied by 2 for a wind speed MAE between 0.8 and 1.6 m.s−1. We compared this method to290

using a constantεi,j over time but no hourly adjustment based on the MAE in Section3.6.

2.6.2 Observation error correlations

At high resolutions, spatial and temporal correlations in transport model errors become increas-

ingly important. Past studies have approached the problem at coarser resolutions (e.g. Gerbig et al.

(2003); Lauvaux et al. (2009b)) and found that error covariances are significant when the distance295

between observation locations is low. Using a diffusion equation model with an ensemble of trans-

port simulations at 8-km resolution, Lauvaux et al. (2009b)estimated the averaged correlation length

in transport model errors at about 30-40km. Between the INFLUX towers, the averaged distance is

about 40km, which suggests that spatial error correlationsmay be significant. However, the correla-

tion length may vary in space and time, and is likely to dependon model resolution and physics. To300

evaluate the sensitivity of the inverse emissions to spatial error correlations, we assumed a relatively

small correlation length and an exponentially decaying model for the distance, with Lobs=10km,

following the equation:

C
i,j
obs = exp

−

d2

i,j

L2

obs (2)

with C
i,j
obs the correlation coefficient between two tower locationsi and j, anddi,j the distance305

between the towersi andj. The observation error correlation matrixCobs has to be symetric, positive

semidefinite, with the diagonal terms equal to one. Further investigations ofCobs showed that a

small number of eigenvalues were negative and required somemodifications of the inital matrix

before inversion. Following Brissette et al. (2007), we used an iterative process to filter negative

eigenvalues. The negative values were replaced by slightlypositive eigenvalues, and the correlation310

matrix was re-generated using the original eigenvectors. The matrix was slightly modified to be

symetric and with positive correlations only. The iterative process converged for all the inversion

periods, modifying the correlation by less than 10%.

Temporal error correlations at high frequency (i.e. hourly) can also affect the simulated atmo-

spheric mixing ratios (Lauvaux et al., 2009b). However, thebatch inversion system as defined here315

is less affected by the impact of hourly error correlations,as the atmospheric data are assimilated in

a single block. Spatially, emission corrections may still vary, but the overall city-wide emissions are
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unlikely to be affected. Therefore, no temporal correlation was introduced in the errors. We quanti-

fied the impact of spatial error correlations by performing asensitivity study, comparing the impact

of error correlation,i.e. non-diagonal terms inR to the initial configuration in section 4.1. Further320

investigation is required to define more completely the spatial and temporal error correlations in high

resolution transport simulations and their impact on the inverse emissions, similar to Lauvaux et al.

(2009b) at coarser resolution.

2.7 Boundary inflow: data selection

The constant flow of air through the boundaries of a limited-domain atmospheric simulation repre-325

sents a significant amount of carbon compared to the local emissions, and therefore is a critical quan-

tity that has to be characterized in the inversion system (Göckede et al., 2010; Lauvaux et al., 2012).

Several studies have suggested to simply measure this quantity upwind of the metropolitan area

(Kort et al., 2012; McKain et al., 2012) similar to aircraft mass-balance techniques (Cambaliza et al.,

2014; Karion et al., 2015). However, background measurements can be affected by local fluxes330

and/or the local atmospheric dynamics which would impair its spatial representativity as a back-

ground measurement. The inflow of air follows primarily the wind direction and its variability in

time and space, directly affecting our ability to measure the upwind conditions in any meteorolog-

ical situations. Therefore, no measured background concentration would remain constant as the air

moves across the domain. Advection-diffusion and verticalmixing modify the mixing ratios as air335

masses move over the city, increasing the representation errors associated with upwind measure-

ments.

To measure the background air, the initial design of the Influx network included two sites cov-

ering the two major wind directions in the area,i.e. Site 1 for the north-westerly through westerly

flows and Site 9 for northerly through easterly winds. Miles et al. (2015) compared several sites of340

the network (i.e. Sites 1, 4, 5, and 9) by computing the fraction of days corresponding to low atmo-

spheric concentrations for each site. This analysis assumes that cleaner air should be measured at the

background sites. The results indicate that Site 1 shows thelowest concentrations on average over

time, whereas Site 9 is systematically biased by a couple tenths of a ppm. Sites 4 and 5 are clearly

influenced by local emissions and should not be used as background sites.345

We selected Sites 1 and 9 as our least biased background sitesfor our analysis and defined the

background concentration for each hourly measurments overIndianapolis following different sce-

narios. These scenarios correspond to the definition of the upwind concentrations at a given time, or

under specific conditions. To evaluate the impact of the definition of the boundary conditions on the

inverse emissions, we produced several inverse emissions using different selection methods. First,350

we used a fixed site for the entire inversion period, using thehourly concentrations at the exact hour.

This scenario is the simplest option for limited networks oftowers. Second, we used an upwind

model, selecting the sites based on the hourly surface wind direction in the center of Indianapolis.
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Figure 4. Selection of the background site to determine the upwind concentrations of CO2 over Indianapolis,

using two semicircles (135◦ and 315◦) and hourly modeled wind directions from the WRF-FDDA system at

three locations across the city. The emitting area defined by Hestia is represented in grey. The distance between

Site 1 and Site 2 (about 35km) corresponds to an advection time of about 2hours.

The upwind model selected Site 1 when the wind was between 135◦ and 315◦, and Site 9 for 315◦

to 135◦ (cf. Fig. 4). Third, we used a daily minimum measured across the network to evaluate the355

importance of hourly changes. The results are presented in section 3.5.

2.8 Inversion methodology

The inversion system solves for a 5-day averaged emission vector of 87x87 unknowns as described

in Tarantola (2004) by minimizing the cost function J and following the equation:

x = x0 +BHT (HBHT +R)−1(y−Hx0) (3)360

wherex are the unknown emissions,x0 the a priori emission estimate,y the observations,H the

influence functions, andR andB the uncertainty covariance matrices of the observations and the

prior emissions respectively. We can define the posterior error covarianceA for sources given by the

following expressionA−1 = B−1 +HT R−1H.

No diurnal cycle has been considered here as the advection ofair masses across the domain takes365

less than 5 hours. With the first observation time being 17 UTC(12pm/1pm local time), the cor-

rection of the emissions applies only to daytime emissions (7am/8am). In other terms, nighttime

13



emissions cannot be constrained using daytime observations for such a small domain. For the total

emissions presented in this study, the posterior emissionscorrespond to the inverse results for the

period 12 - 22 UTC, combined with the prior emissions (Hestia) for the period 23 - 11 UTC. We370

performed a second case using a slightly different time window, i.e. 20 to 23 UTC, due to the lack

of a precise definition of the afternoon, corresponding in theory to the well-mixed conditions in the

PBL. We followed the optimal time window defined in Miles et al. (2015) to evaluate the sensitivity

of the inverse emissions to the observation time window (cf.3.6).

3 Results375

3.1 Sectoral contributions

We show in Figure 5 the sectoral contributions at each tower locations based on Hestia 2012 emis-

sions combined with the WRF-FDDA-LPDM footprints for the month of October 2012. The sim-

ulated CO2 mixing ratios correspond to the 1-km surface footprints combined with the aggregated

1km Hestia emissions, at the hourly time scale, averaged over the month of October 2012 for the380

hours 17-22UTC. The atmospheric mixing ratios have not beennormalized to reflect the impact of

lower sampling heights on the magnitude of the atmospheric signals. This effect is simulated by

the Eulerian and the Lagrangian models later in this study. The two sites with two lowest sampling

heights (at 40m high) are the sites 10 and 12. Atmospheric enhancement at Site 12 is low despite the

low sampling height. However, the enhancements at Sites 10 and 3 are large, mostly because of the385

presence of two power plants. The mobility sector, (i.e. traffic emissions, is the largest contributor to

the atmospheric enhancements (45% of the total enhancements) at the nine tower locations, similar

to the emission ratios for the same sector (44%). The second contributor is the utility sector, with

two towers showing very large contributions (about 50%), and most the towers between 10 and 20%

(except Site 9 with only 2% of the signals). In terms of emissions, the utility sector represents 20% of390

the emissions over the nine counties. This sector is clearlyunder-represented by most towers, over-

represented at two sites (3 and 10), and absent at Site 9. The non-uniform distribution is explained

by the locations of the power plants,i.e. with only few large point sources over the domain. Atmo-

spheric signals from the industry sector represents about 12% on average, similar to its associated

emission contribution of about 9%. The commercial and residential sectors represent respectively395

6% and 9% of the atmospheric enhancements, compared to 6% and7% of the emissions. Finally,

the airport and the railroad sectors represent less than 2% each of the total signals, similar to the

emission contribution.

3.2 CO2 inverse emissions over Indianapolis (Initial configuration)

We present here the results for the initial configuration of the inversion system. Some of the assump-400

tions made in this inversion are discussed later as additional unknowns. Here, the a priori emissions
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Figure 5. Sectoral contributions (in ppm) using the WRF-FDDA-LPDM footprints at 1km resolution com-

bined with the Hestia sectoral CO2 emissions for October 2012, except for the Railroad and the airport sectors

representing about 2% of the emissions and the atmospheric enhancements.

Emission

Sector Com Ind Road NonRoad Res Util

Atmos.

signals 6% 13% 45% 5% 9% 20%

Surface

Emiss. 6% 9% 44% 6% 8% 20%

Table 1. Sectoral contributions (in %) in the simulated tower mixing ratios averaged over the network of 9

towers compared to the surface CO2 emissions (Hestia).

correspond to the Hestia emissions aggregated at 1km resolution. The prior errors were set to 60% of

the net emissions, including an urban correlation length of4km to define the spatial error structures

as described in section 2.5. The background mixing ratios were defined by the observed mixing ratios

at Site 1 (SW of Indianapolis). Figure 6 shows the CO2 emissions time series averaged over 5-day405

periods from Hestia (upper panel, in red) and the corresponding posterior emissions (upper panel, in

blue) from September 2012 through April 2013. The errors foreach 5-day estimate are significantly

reduced after inversion, from about 25% to around 9% on average. Over the 8-month period, the

inverse emissions remain similar to the a priori Hestia emissions, with some additional variability.

The emissions are increased during the first few months (September to mid November). The total410

aggregated emissions are about 20% higher than the Hestia emissions over the period (5.5MtC ver-

sus 4.56MtC). The emission corrections are shown in Figure 7(lower left panel) with an overall

increase following the beltway and the residential and commercial areas. The error reduction (upper
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Figure 6. 5-day inverse emission estimates in ktC for Hestia (upper panel, in red), ODIAC (lower, in green),

and their respective inverse emissions (in blue) for the period September 2012 - April 2013

left panel) is about 30% in the urban area, with larger valuesin the southern part of town, where the

tower density is higher (cf. Fig.??).415

3.3 Impact of a priori emissions (ODIAC)

The ODIAC CO2 emissions were used as a priori emissions, which also impacts the prior emission

errors due to the scaling of the variances with the net emissions. In addition, a larger error was used

for ODIAC, i.e. 100% at the 1-km pixel level. Figure 6 shows the 5-day emissions from ODIAC

(lower panel, in green) and the corresponding inverse emissions (lower panel, in blue). The tempo-420

ral variability in the inverse emissions shows some differences compared to the initial case, which

suggests that the spatial distribution of the prior emissions and their associated errors can impact

the temporal variability of the inverse solution. However,the variability remains similar to the initial

case, with lower emissions around the end of 2012 and early 2013. The error reduction presented in

Figure 7 (upper right panel) shows a homogeneous reduction of about 30%, driven primarily by the425

homogeneous variances and the spatial error correlations,and covering a larger surface extent than

the Hestia-based inversion estimate. The emission corrections (lower right panel) are similar to the

error reduction spatial distribution. These results suggest that the assumed correlation length over

16



Figure 7. Error reduction (in %) (upper panels) and relative change in emissionsafter inversion (in %),i.e.

differences between the prior and the posterior emissions (lower panels), using the Hestia product (left) and

ODIAC (right) as prior emissions

the urban area forces the spatial distribution of the inverse emissions rather than the variances. Oth-

erwise the corrections would be larger in the downtown area.We present three other cases in section430

4.4, and discuss the current limitations due to the absence of well-characterized error structures in

the prior emissions. The total emissions are indicated in Table 2 with an a prior total of 4.14MtC,

slightly lower than Hestia, and an inverse estimate of 5.4MtC, larger than inverse estimates using

Hestia. The assumptions in the prior errors drive to a large extent the larger emission correction

when using ODIAC, considering that ODIAC errors are larger than Hestia.435
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3.4 Transport model errors: scaling of variances

The atmospheric simulations using the WRF-FDDA modeling system were evaluated using three

meteorological surface stations in the Indianapolis area for both the horizontal mean wind speed and

direction. The PBL depth evaluation over two months (September-October 2013) was used to select

the model physics configuration and quantify the impact of the meteorological assimilation system440

(Deng et al., in prep.). Over a 2-month period, the simulatedPBL depths were compared to obser-

vations from a HALO Photonics Doppler lidar2. HALO measures high-resolution vertical velocity

variance and aerosol backscatter signal strength profiles that can be used to measure the mixing

depth. The systematic model-data mismatch (mean error) is 105 m over the two months, and the

mean absolute error is 275 m. These mismatches are relatively small over the 2-month period corre-445

sponding to less than 7% of the PBL depth. Considering model performances at higher frequencies

(hourly to daily variability), we used surface wind measurements to quantify the hourly variances

as a first-order assessment of model errors. The PBL depth wasnot used to estimate model errors at

the hourly time scale. In urban environments, the spatial gradients in emissions are extremely large

compared to natural ecosystems. Therefore, wind errors canaffect significantly the spatial distribu-450

tion of the inverse emissions if a large source is attributedto a near-zero emission area. To describe

hourly model errors, we used wind direction and speed as proxies in order to propagate model errors

into the inversion and avoid source attribution errors.

Wind speed and direction model-data differences were used to scale the hourly errors (i.e. the vari-

ances in the observation error covariance matrixR) associated with the modeled mixing ratios. The455

monthly statistics for both variables are shown in Figure 8 with the quartiles of the mean error, and

the median of the mean absolute errors over each month. Whereas the hourly variability (represented

by the 25% and 75% quartiles) is large, the monthly medians are low (about 12.2◦ for wind direction

and 0.8ms−1 for wind speed over the entire period). These results suggest that whereas monthly

systematic transport errors are small, the hourly errors can be large. The simulated meteorological460

conditions can be off by 45 degrees or more for a specific observations. We corrected for hourly

errors by introducing the hourly wind errors inR (diagonal elements)as explained in section . When

using the scaling of the variances of the observations basedon model transport errors, the inverse

emissions aggregated over the period decrease slightly compared to the initial case (5.73MtC versus

5.79MtC (cf. Table 2).465

Overall, the WRF-FDDA system improves significantly the averaged performance of the WRF

atmospheric model compared to the historical mode (i.e. no assimilation of meteorological data), as

shown in Rogers et al. (2013). For this second step,i.e. propagating hourly variances into the inver-

sion system, which is equivalent to filtering the transport model results, the impact is less significant

over the entire time periods. Errors associated with specific meteorological events have been con-470

siderably reduced by removing specific days. But over the 8-month time period, no bias has been

2http://www.esrl.noaa.gov/csd/projects/influx/
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Figure 8. Quartiles of the monthly mean error and mean absolute errors (black diamond) for the horizontal

mean wind direction (top panel) and speed (bottom panel) at 1km resolutionusing measurements from WMO

surface stations.

associated with the hourly transport errors. This analysissuggests that long-term model improve-

ments are more important than propagating short-term modeldeficiencies to avoid misattribution of

hourly signals.

3.5 Sensitivity to the background concentrations475

We present here the results of the different strategies usedto define the background concentrations.

The first strategy defines the background concentrations by using the concentrations at Site 1 at the

exact time of the observations. Site 1 is the climatologicalbackground site located upwind about 60%

of the time. The second strategy uses the optimal site location based on the wind direction (upwind

model), as described earlier. Sites 1 and 9 are the two options depending on the wind direction.480

When one site is not operational, the other is used even if the wind direction is not optimal. The

last strategy uses the daily minimum at the upwind site, similar to the second strategy. This last

option offset potential temporal variations observed in the early afternoon. The risk of sampling low

concentrations at later times is not negligible. This strategy is the least likely option for realistically

sampling the background. Table 2 shows that the two first strategies produce very similar inverse total485
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Case L=12km Low traffic Low utility Largeσ
2

B ODIAC L=4km

Prior 4.56 4.15 4.2 4.56 4.14 4.56

Posterior 5.79 5.16 5.24 6.13 5.35 5.5

Case Wind model Daily Min 10 days λ.ε 20-23UTC L=0km

Prior 4.56 4.56 4.56 4.56 4.56 4.56

Posterior 5.53 6. 5.88 5.73 5.69 4.73

Case 4 Sites (A) 4 Sites (B) 4 Sites A (L=4km) 4 Sites B (L=4km)

Prior 4.56 4.56 4.56 4.56

Posterior 5.36 5.52 5.13 5.17

Table 2.Prior and posterior emissions from the various inversion configurationsreferred as the initial inversion

case (L=12km), a decrease of 40% in the a priori traffic emissions (Low traffic), a decrease of 40% in emissions

from the a priori energy production sector (Low utility), using large prioremission variances (Largeσ2

B), using

ODIAC as prior emissions (ODIAC), assimilating only 4 sites out of 9 (4 Sites(A) and 4Sites (B)), assimilating

only 4 sites out of 9 with a lower correlation length of L=4km (4 Sites A (L=4km) and 4 Sites B (L=4km)),

varying the correlation lengthL in the prior emissions errors (L=0km and L=4km), varying the definition of

the background conditions using the wind direction (Wind model) or the minimum of the day (Daily Min),

assimilating over a 10-day time window instead of 5 days (10 days), filteringhourly observations using wind

model errors (λ.ε), and varying the afternoon window for observations (20-23UTC)

emissions with 5.53 MtC (wind model) and 5.5 MtC (L=4km), whereas the third strategy increases

the total emissions significantly (6 MtC). The daily minimums are selected over the time window

17-22UTC, with the lowest values being usually observed between 20 and 22UTC. This technique

introduces a positive bias in the inverse solution by selecting a late afternoon mixing ratios at the

upwind site (i.e. lower concentrations), artificially increasing the emissions over the city. This last490

method is also the least realistic because the lowest concentrations are often observed at the end of

the day, which is inconsistent with the advection time of airmasses across the city. The first two

strategies represents the difference between Site 1 and a combination of Site 1 and Site 9 depending

on the wind direction. If Site 1 is contaminated by any local signals, the current analysis would not

diagnose its impact. An additional site measuring background concentrations will be deployed to495

test the potential impact of upwind sources.

3.6 Uncertainty assessment: ensemble approach of inverse estimates

An ensemble approach of inversion configurations was designed to quantify systematic errors due

to the various assumptions made in the urban inversion system. The ensemble consists of two sets

of results, the first representing prior-related cases, such as varying the spatial error structures in500

prior emission errors, and the second set of results relatedto the observations and their associated
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uncertainties. The first set of results, presented in Figure9 (light gray), show three different correla-

tion lengths L (as described in Section 2.5) and a different prior (ODIAC). The impact of various L

is clearly the main contributor to the changes in total emissions, even if the fully uncorrelated prior

emission scenario seems very unlikely considering the use of data and model parameters in the Hestia505

and ODIAC products. We discuss the impact of L on the spatial distribution and the total emissions

in section 4.4. The use of ODIAC is also important with noticeable differences in the spatial distri-

bution. The second set of results, in gray, includes different assumptions related to the time window

for the observations (20-23UTC instead of 17-22UTC). Mileset al. (2015) defined the well-mixed

conditions based on the temporal variability in the CO2 mixing ratios, and found that the period 20-510

23 UTC would be more appropriate to avoid a late morning transition in the PBL depth. The results

are presented in Table 2. The difference with the initial case remains small which may suggest that

the WRF-FDDA model is able to simulate the late PBL growth in the early afternoon. The ensemble

includes several other configurations including the use of hourly transport errors based on hourly

wind error statistics, and the definition of the background concentrations. The two sets were used to515

define the quartiles of the ensemble, notedensemble spread in Figure 9. The ensemble mean is about

5.66MtC, the second and third quartiles at 0.23MtC from the mean, the first and fourth quartiles at

0.85MtC from the mean. The inverse emission using Hestia andODIAC are statistically different

from the 50-75% of the ensemble mean. However, the definitionof the correlation length seems to

encompass both prior and posterior solutions, especially between no correlation in prior emission520

errors and the caseL = 4km. We discuss the sensitivity to the prior error structures insection 4.4.

The third set of results exploring network design cases and sectoral emissions, in Fig. 9 (dark gray),

were not included in the ensemble and are discussed later in Section 4.3.

The time series presented in Figure 10 was created by the sametwo subsets of configurations (ex-

cluding the top 6 cases presented in Figure 9 in dark gray). InFig. 10, the dark grey zone represents525

the ensemble spread whereas the light gray zone includes theensemble spread and the posterior

uncertainties of the cases. Earlier findings described in the time series of the posterior emissions (cf.

Section 3.2) are confirmed here in the ensemble, with higher emissions than the Hestia prior (dashed

line) during the first 3 months of the period, lower emissionsat the end of December 2012 and early

in January 2013, and an overall agreement in the first months 2013. Some short-term variations are530

consistent across the different configurations,e.g. the large increase in late October 2012.

4 Discussion

4.1 Impact of transport errors at high resolution

Urban emissions is likely to require the development of highresolution inversion system, potentially

reaching the physical limits of the numerical scheme assumptions in the mesoscale model, such as535

the turbulence closure scheme in the PBL. In other terms, therisk of violating the parameterized
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Figure 9. Whole-city inverse emission estimates in MtC over September 2012 - April 2013 using the different

inverse system configurations and prior emissions

sub-grid scale turbulence assumption becomes non-negligible in stable and neutral conditions with

turbulent eddies smaller than the model resolution. At short distances, the plume structures from

isolated sources may not follow the well-mixed assumptionsof the model. In addition to physical

limits in numerical schemes, the local atmospheric dynamics is influenced by large spatial gradients540

in the surface energy fluxes. Under these conditions, sources of systematic errors in the transport

model are numerous and difficult to overcome. The use of a meteorological assimilation system,i.e.

WRF-FDDA, improves the model performances (Rogers et al., 2013) but large discrepancies can

still affect the wind direction and speed (cf. Figure 8). Additional evaluation of the near-field atmo-

spheric dynamics is still required to quantify the modelingperformances and the representation of545

fine-scale structures, mostly visible around the major sources at short distances. Here we improved

our initial WRF modeling system with the FDDA methodology, and propagated errors into the inver-

sion scheme. We evaluated the impact of the spatial structures in the transport model errors through
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Inverse emissions (ktC) − Sept 2012 to April 2013
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Figure 10.Ensemble of 5-day inverse emission estimates in ktC using multiple configurations,i.e. varying the

prior error correlation length, the background definition, or the transport model errors, from September 2012 to

April 2013

the use of correlation lengths, similar to (Lauvaux et al., 2009a) who diagnosed structures from a

small ensemble of perturbed simulations. In this study, thecorrelation length scale was applied to550

the observation error covariance matrix with an exponentially decaying model. Considering the use

of our high resolution WRF-FDDA simulation over a highly heteregeneous landscape, we reduced

the length scale from 30km (in the original study) to 10km to represent the potentially smaller spatial

structures in transport errors. When introducing these covariances, the posterior emissions end up at

4.93MtC, with a smaller correction to the prior emissions compared to the reference inversion, as555

expected when increasing the errors associated with observations. This initial inversion shows the

importance of potential error structures at fine scales. No temporal correlation was introduced due

to the lack of information at these scales and the batch inversion system which limits the impact of

hourly error correlations.

4.2 Network design: impact of tower locations and heights560

4.2.1 Network design of surface towers

The deployment of tower networks for emission monitoring highly depends on the objectives of

the study. We propose here to discuss the monitoring of the emissions from the entire urban area,

and the mapping of emissions at higher resolutions. For the first objective, we compare two sub-

networks, presented in Table 2, which correspond to two optimal network configurations with one565

upwind site, one downwind site, and three centrally locatedtowers. We also used two different cor-

relation lengths (L=4km and L=12km) in the prior error statistics as this parameter can significantly

impact the inverse solution (cf. Section 4.4). By assuming alarger correlation length (L=12km), the

two networks produce fairly different total emissions with5.36MtC and 5.52MtC, which are further
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Figure 11. Emission correction (in %), correspondiong to the ratio of emission change between the prior and

the posterior emissions, for 2 different sub-networks. Both networksinclude 4 tower locations selected for both

maximum enhancements over the city and background sampling. Both inversions were performed over the

period September 2012 - April 2013, using the initial configuration.

decreased with lower L (respectively 5.13MtC and 5.17MtC).Figure?? shows that the main dif-570

ference between the two networks (left column compared to the right column) originates from the

magnitude of the correction in the center of the city and a short section of the beltway (SW and N

sections) which shifted from a negative correction (lower left panel) to a positive correction (lower

right panel). The impact of the correlation length (4km versus 12km) is similar to the results using

the entire network (cf. Figure 13), confirming that prior emission error structures do not only alter575

the total emissions but also the location of the sources, as discussed in Section 4.4. Overall, the tower

deployment is highly dependent on the assumptions made in the prior emission errors. If large cor-

relations are to be true, a network of four towers would suffice to constrain the urban emissions. But

this assumption is highly uncertain, meaning that network design will require a better understanding

and a better quantification of prior error structures beforeany robust conclusions can be made.580
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4.2.2 Sampling heights: Sensitivity to surface emissions

The various GHG analyzers deployed around the Indianapolisarea are all on tower structures, with

four instruments at 120m or more, four on 60-90m towers, and four at about 40m high. The sampling

height remains a critical parameter in the mesoscale models, with large vertical gradients in stable

to neutral stability conditions that are diffcult to simulate correctly. In well-mixed conditions, 40m585

towers may still be affected by vertical gradients in the surface atmospheric layer, and very likely

to suffer from large model errors. The Atmospheric Surface Layer (ASL) is not well-simulated in

mesoscale systems, and t at this elevation, even higher vertical resolution is unlikley to improve the

vertical mixing near the surface. In Figure 12, we show the influence functions for the nine towers

used in this study. Towers 1 and 9, located outside of the cityto the West and the East of the network590

respectively, have a smaller impact on the surface emissions. These two towers are the tallest struc-

tures instrumented for the experiment, at 136m and 121m high. The WRF-LPDM footprints repre-

sent the increased sensitivity to the surface when the stability conditions are not convective. Because

the inversion period covers winter, observations in the afternoon are still affected by vertical gradi-

ents in CO2 despite selecting the period of maximum solar radiation. Atthese low elevations above595

ground-level, vertical gradients can be observed as shown in Miles et al. (2015). Further studies are

needed to estimate the capability of mesoscale models to simulate correctly the vertical gradients in

the ASL during well-mixed, stable, and neutral periods.

4.3 Sectoral emission detection and quantification

In the current study, the emissions over Indianapolis metropolitan area were inverted using the total600

CO2 concentrations,i.e. without any consideration for the underlying emission processes. In section

3.1, the sectoral contribution is presented in the simulated mixing ratios, using the forward simu-

lations. To investigate the potential of detection of the major economical sectors in the inversion,

i.e. traffic and energy production, we performed two additional inversions decreasing the emissions

from these two sectors, by 40% for the utility sector and by 20% for the traffic sector. The total prior605

emissions decreased from 4.56MtC originally to 4.2MtC and 4.15MtC (cf. Table 2). The inversion

was able to retrieve most of the decrease, ending at 5.24MtC and 5.16MtC respectively. For the util-

ity sector, the inverse solution distributed the correction according to the spatial structures in prior

emission errors (not shown here), failing to identify precisely where the power plants were located.

When assuming no spatial correlation in prior emission errors, the main emission correction was610

located in the South West quadrant of town, around the main major power plant (Harding Street).

For the low traffic scenario, the spatial pattern of the emission correction matches the beltway, even

though the pattern may be primarily constrained by the prescribed variances associated with traffic

emissions. This first order assessment of emission detection suggests that the inversion system is
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Figure 12. Influence functions in ppm/(gC.m−2.h−1) for the nine instrumented INFLUX towers aggregated

over the 8-month period. Sites 1 and 9 show the lowest sensitivity to the surface primarily due to higher sampling

heights under low vertical mixing conditions. Additional effects on shortertower sensitivity due to the proximity

of the sources is not considered here.

able to retrieve major changes in sector emissions. Additional investigations are needed to define the615

exact potential of the system for both trend detection in specific sectors and spatial variability.

4.4 Impact of prior error statistics on inverse emissions

The definition of the prior emission errors remains subjective at this point, with no existing rigorous

quantification of emission errors at high resolutions. We used the difference between several exist-

ing emission products (i.e. Hestia and ODIAC) at the pixel-level to define the prior errorvariances,620

equivalent to 25% of the net emissions aggregated over the domain. At the pixel level, this corre-

sponds to an uncorrelated error of about 60% for Hestia. We increased this error to 200% to generate

a purely data-driven solution, with a low correlation length of 4km. The inverse emissions aggre-

gated over the domain are equal to 5.57MtC compared to 5.5 MtCover the same time period for

the initial case. The two solutions remain similar despite the very large prior emissions error. This625

results confirms that the total prior errors do not over-constrain the inverse solution. But solving for

spatial structures across the area requires additional information related to the spatial structures of

the prior emissions errors Saide et al. (2011). Methodologies to define the error structures exist (e.g.

Wu et al. (2013)), assuming that simple parameters can be optimized, such as a correlation length in

an exponentially decaying scenario. Here, the use of correlation length over the urban area increases630
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Figure 13. Relative change in emissions after inversion (in %) using no correlation length (left), a correlation

length of 4km within the urban area (middle), and 12km within the urban area(right) in the prior emission error

covariances

the complexity of such a model. But this approach was assumedto better represent the spatial co-

herence of incorrect emission factors for the mobility sector, or any systematic errors affecting the

underlying models used in the Hestia emission product. A simpler model would ignore the urban

area and potentially propagate corrections to non-urban areas. In Figure 13, we show the difference

between the inverse emissions and the prior, using three different correlation lengths,i.e. L=0km635

(left panel),L=4km (middle panel), andL=12km (right panel).The spatial distributions vary from

localized adjustments around the sites (forL=0km), to an overall adjustment of the road emissions

when assuming large correlations (L=12km). Clearly, the spatial distribution of the flux corrections

are driven by the prior emission error structures. In addition, the total emissions vary from a mi-

nor correction (4.73MtC with L=0km), to more important corrections (5.5MtC and 5.79MtC with640

L=4km and L=12km). Therefore, the quantification of prior emission errors and their associated

structures is a critical component of the information. The correlation legnth impacts the total inverse

solution and the spatial distribution of the solution, which relates to the sectoral attribution prob-

lem, as the structures dictate the distribution over different areas of the city. One could argue that

no correlation in the prior emission errors may be an extremecase, considering that the underly-645

ing models used in the emission products such as Hestia combine emission factors with their input

data. Therefore, spatial correlations would be likely to affect the emissions for specific combustion

processes but not across the city as whole. Knowing that CO2 emissions combine several sectors of

activity which are unrelated for the most part, spatial structures in emission errors may be spatially

limited once combined into total CO2 prior emissions. For these reasons, future studies will need to650

address carefulle this key parameter in the inversion system. Similar work has been accomplished at

the regional scales, using optimization methods such as (Wuet al., 2013).
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5 Conclusions

This study presents a high resolution inversion system based on a Four Dimensional Data Assimi-

lation meteorological system to simulate the atmospheric dynamics at 1km resolution over the city655

of Indianapolis. The inverse emissions were evaluated over8 months (i.e. September 2012 to April

2013) using two different a priori emissions, Hestia, a state-of-the-art building-level emission prod-

ucts, and ODIAC, a space-based emission product. The reference inversion produced whole-city

inverse emissions of 5.5 MtC, about 20% higher than the prioremissions from Hestia (4.6 MtC).

Total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are660

5.26 - 5.91 MtC,i.e. a statistically significant difference compared to the two prior total emissions

of 4.1 to 4.5 MtC. Single configurations of the inversion system produced lower posterior uncertain-

ties than the ensemble spread, reflecting the uncertaintiesassociated with the various assumptions.

Transport model errors were estimated from the WRF-FDDA system and introduced in the inversion

system through the use of hourly variances adjusted according to the hourly model performances.665

The upwind conditions were prescribed by using two towers located at about 20 to 30km from the

city, with an hourly site selection based on wind observations. However, several parameters of the

inverse system remain under-constrained, at the origin of the ensemble variability. In particular, spa-

tial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern

in the inverse solution, as well as the carbon budget over theurban area. We therefore conclude670

that atmospheric inversions are able to constrain the carbon budget of the whole city to an absolute

uncertainty of about 25%, but additional information on prior emissions and more specifically about

their associated error structures are required if atmospheric inversion systems are built to determine

the spatial structures of urban greenhouse gas emissions athigh resolutions.
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